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Abstract —A composite material, made up of linearly elastic inclusions and matrix, is considered.
The two components are held together by viscous coupling. We show that the effective properties
of this medium can be obtained using homogenization techniques. The resulting homogenized
material is anisotropic in elasticitics as well as in dissipation. For the special cuse of a laminated
composite, we can state the etfective constitutive law explicitly. The anisotropies in the dissipation
are studied in detail.

L. INTRODUCTION

We model the propagation of waves in a two-dimensional medium which contains micro-
structural inclusions, The Latter are coupled to the matrix material by viscous contact. This
simple-minded model is a est attempt at mathematically modeling propagation phenomena
in & medium where there is inherent anisotropy in the dissipation. Possible applications
include the description of wave propagation in damaged composites where substantial
debonding of the fibers has occurred, and in geological formattions consisting of rocks or
plates which slide against one another.

The components of the medium in question will be materials satistying linear isotropic
clasticity. In addition, the microstructure will be assumed to be periodic. The underlying
assumptions will be that the dominant wavelength of the disturbance is an order of mag-
nitude larger than the lengthscale of the microstructure. We shall use homogenization
techniques to show that it is possible to replace the complicated medium by an effective
medium. The steps leading to homogenization will be presented.

A special case, that of a medium made up of fine layers, will be studied in detail. This
further simplification allows us to write down the equations of the effective medium
explicitly, and to give a description of its properties.

2. MODEL OF THE MEDIUM

We assume that our composite is made up of a mixture of two linearly elastic, isotropic
components. To represent the inhomogeneity due to the microstructure, which is of length
scale ¢ (small), it is convenient to define the Lamé moduli and density as functions of
position x = (x,,x,). To incorporate the smallness of the microstructure, we denote the
Lameé parameters and the density by

pr(x) = pix/e)
(X} = A(x/e),
P (x) = p(x/e).
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Furthermore, the medium 1s periodic, with period p:

u(y+p) = u(y.
Aly+p) = Aily).
p(y+p) = p(¥).

for any vector y. Here the fixed vector p = (p,.p.) represents the periodic cell.

We shall work with particle displacements. Thus let u* be the particle displacement
vector (components . { = 1. 2). We shall use ¢° to represent the stress tensor (components
o;,). The superscript ¢ is used to indicate the dependence of the displacement and stress on
the size of the microstructural cell. Hooke's law for isotropic elasticity states that

o, = W(CHE + C ) + A5(Cetiz)0,. (n

We have used the standard notation: ¢, = ¢, .

We shall now go into a cell and describe the microstructure. For convenience, let this
cell occupy [0.&p ] x [0, ep,]. We shall use a scaled variable y = x/e. We separate each cell
into two regions, whose boundary is a closed curve I'. The domain enclosed by I is denoted
by Q. The situation is depicted in Fig. 1. In cach cell we assign the Lamé parameters 1o
tike on values:

WoifyeQ
u(y) = "

ify¢Q,
. A ifyeQ
AN =10 iryeq

Likewise, we have for the density

pt ifyeQ
P =10 iryea

To complete the description of the microstructure, we shall precribe boundary con-
ditions on [". To model the possibility of sliding along the boundary " which sepurates the
two mixture components, we shall assume that the displacement normal to the boundary
is continuous, while the velocity tangent to the boundary is allowed to suffer a jump whose

12

Iz

n Yt

Fig. 1. This figure illustrates the geometry of a cell. The medium in question is made up periodically
of identical cells.
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magnitude depends linearly on the stress at that point. For the cell in question, these
requirements are reflected in the equations

(hirs —thilc N, =0, &)
c
g@,(“ﬂn—'uﬂr-)rl =0'f;N:Tj|ri- (3)

Here. N and T are the outward normal and tangent to the curve I'. The notation ['—
implies that we approach the boundary from inside Q. and I'+ from outside Q. The
parameter ¢ is the viscous constant.

The factor 1/e on the left-hand-side above is necessary because we are interested in the
behavior of the solution v’ as ¢ — 0. If we do not have this factor, the homogenized medium
does not support propagation. This can be demonstrated using the asymptotic method
employed in the next section.

The final equations needed to completely specify the problem are the balance of
momentum equations, written here as

pocul = 0,05, )]

It is understood that the prescription of the cell problem is repeated until the entire
domain of interest is covered. The problem we have in mind for this system will be some
kind of initial -boundary value problem. Clearly the problem we have at hand is a very
difficult once. It is not obvious for example how onc should solve it numcrically. However,
in this work, we shall use a technique that allows us to investigate the behavior of the
solution as £ — 0.

3. HOMOGENIZATION

To analyze the problem at hand, we shall use a technique which is known as homo-
genization methods or effective medium theory. For excellent general references on this
approach, see Bensoussan er al. (1978), and Sanchez-Palencia (1980) ; see also Sanchez-
Palencia and Zaoui (1986) for a survey of examples of using homogenization to solve some
engineering problems.

Homogenization attempts to find the effective behavior of the composite medium by
looking at the limit when the size of the microstructure e goes to 0. For hyperbolic problems
that are in consideration here, this means that the dominant wavelength of the distrubance
in the medium must be an order of magnitude larger than the length scale of the micro-
structure. This is a more ‘standard’ interpretation of homogenization, and is called the
static limir by Bensoussan er al. (1978). For transient problems involving a wide spectrum
in the disturbances, other techniques must be developed.

However, homogenization does give us a relatively simple way of studying this problem.
In addition, the resulting cifective medium equations are amenable to computation. It is an
approximation whose accuracy has been assessed for the case of a porous medium, both in
numerical simulations and in laboratory experiments —see Auriault es al. (1985). The issue
of numericul analysis and accuracy of homogenization of elliptic partial differen-
tial equations has also been studied ; see for example Babuska (1976) and Vogelius and
Papanicolaou (1982).

[t should be pointed out that homogenization is not the only technique available to
obtain the effective properties of a composite. Achenbach and Sun (1971) presented a
method based on averaging of physical quantities and requiring specific physical principles
to be satisfied. While this procedure is intuitively appealing, homogenization has the advan-
tage that it is a mathematical technique based on asymptotics. This fact allows one to
proceed formally, and to apply it over a wide varicty of physical problems (linear or
nonlincar) described by partial differential equations.
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Others have considered this problem of hyperbolic partial differential equations with
period coefficients from another point of view. The fact that the coeflicients are penodic
allows one to use a version of Floquet Theory. The solution of the problem can usually be
represented in terms of eigenfunctions (called Bloch waves). The theory, although very
cumbersome computationally. is exact. For instance, it is possible to find the dispersion
relation of the medium. Interested readers are referred to Achenbach and Kitahara (1987),
Delph er al. (1979) and Odeh and Keller (1964). It seems possible to extend this theory to
our problem, where in addition to the periodic coefficients, we also have internal boundary
conditions.

It is also possible to break away from the assumption of medium periodicity by
considering a random medium with microstructures. Burridge et al. (1987) studied long-
time statistics of the response of a one-dimensional random medium. The problem of heat
conduction in a medium with random conductivities was considered by Papanicolaou and
Varadhan (1982). using a technique which is in the same spirit as homogenization. It was
not clear however how the formulae could be exploited. as they appear to be very special
and difticult to compute with.

The idea behind homogenization is to first assume that the solution depends on two
spatial variables x and y = x/¢. The sccond variable, referred to as the *fast variable’, takes
into account the two scales present in the problem. Let us suppress the dependence of the
solution on ¢ for the moment. The physical displacements and stresses are understood as

uw(x) = u(x.y), ..

o' (x) = a(x, Yy -y e

where both u and o are functions of the two independent spatial variables x and y.
Next, we wrile it power scries expansion in ¢

u(x.y) = u(x.y) +eu' (x,y) +eu(xy) koo (5)

a(x.y) = a’(x,y) +ea' (X, y) +ela (X, y) + . (6)

It is further assumed that u* and ¢* are periodic with period p in the variable y to take into

account the periodicity of the microstructure.
Partial differentiation with respect to x, of t* and ¢* yields

1
pl - (11 + EDiv (7)

where D, = ¢, .
The next step is simply to substitute the expansions in (5) and (6) into eqns (1) and
(4), and match equal powers in e. From eqns (1) we get
WD + D,y + AD ), = 0, (8)
from the ¢ ' terms. From ¢" terms, we get
ol = () + ¢ u) + 20 ), + (D) + Doy + (D)9, 9
Similarly, from equation (4). we obtain

D, =0. (10)

poiul = (’,»0’,‘;-{- D,rr,',. {an
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From eqns (8). we can conclude that u® depends only on x and ¢, because both 4 and
u are both positive.

To make the following calculations more manageable, we will need to work with the
strain tensor

)= Yew) +0ul).
and the ‘microstructural stress tensor’
) = u(Da} + Dul) + A Deted)d,,.

Keep in mind that the Lamé moduli are functions of y only.
Next. we combine eqns (10) and (9) to obtain

D/-T,*‘j = — [2Dju5,k5,, + D,;.(S,,(sk,]sfl. ( IZ)

To completely determine u', we go to the boundary conditions (2) and (3). Using the
expansion and matching equal powers of ¢, we get

(i les —u'lr N, =0, (13)
(! les !l T = aN.Tlr s (14)

The last three equations, along with the periodicity requirement in the variable y, determine
i
u'.

To display the character of the effective medium, we need to obtain a representation
for u'. To this end, we put egn (9) in the right-hand-side of (14) and rearrange to get

44 :(“: lyy =4, |r t,,['N I r = (711‘5.1:‘5,1""'{‘subu)TN Ir Uu- (15)

Notice that in the right-hand-side, £ depends only on x and ¢,

Now we arc ready to define what are called the *local problems’ by Sanchez-Palencia
(1980). Let the auxiliary functions x*(y) and g*(y, ¢) be p-peridoc vector functions in y and
satisfy

D/("(Dile"}' D/X ) + }‘(Dlnxu)bu) = - [201”‘51&5//'*' Dj}'(sl/‘sld]' (I6)

with ¢* continuous across I, and

D,(u(Dy + D) + A(Dni)d,) = 0
('les =0l )N =0,
C'al(ﬂfllro —'I:IIF )T - (#(Dt"] /"tl) +}~(Dm"“ ‘)Aj) = (2“61116//'*' }“SA/(skl)TtN/IFt H(’)
(17)

H(?) is the Heaviside function. The initial condition for #* should be one that agrees with
the displacement vector. For instance, if u* = 0 for ¢ < 0, then we must have y* = 0 for
1 < 0 also.

Then, from eqns (12), (14) and (15), we arrive at the representation

u' = M(y)ed+ J; dsq*'(y. 1 — s)eg(s). (18)

We can now write down the equations governing u® and ¢°. We shall use

— 1
()= 'I;L dy()
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to denote the averaging operation over a periodic cell P. From eqns (9) and (18), we have

a.-lol(x' ') = [(2#61k5/1+;'5|/6k1) +”(Dxxfi+ D/Xtrr) +;~(Dmxfn,)(5u]€£l(x~ [)
+ (DA + D)+ A(Dp)d, ) » eir(x.0). (19)

The equilibrium equation is obtained from (11):
péiu) = é6) (20)

because D,a = 0 by periodicity.

Equations (19) and (20) specify the effective medium. It is thought of formally as the
solution of the original problem for ¢ — 0. The specification of the microstructure, that is,
c. p. 4. pand I', determines the auxiliary functions ¢* and 4. Once they are obtained, they
are inserted into eqns (19). which gives the effective coeflicients of the lossy elastic medium.

The expression (19) has a very natural interpretation. The first term on the right is the
elastic anisotropy contribution, due to the microstructural inhomogeneity of the medium.
The second term is the contribution from the viscous losses caused by the presence of
microstructural boundaries. Notice that the latter is a convolution of a kernel with the
strain tensor (not a product!). It is possible to show that the effective Hooke's tensor
satisfics the usual symmetrics ; see for example Sanchez-Palencia (1980). Itis not very hard
(only tedious) to show that the dissipation tensor g*' is symmetric in & and /.

The second term is responsible for energy loss — this may be possible to assert from
the nature of the kernel #* and encrgy estimates. However, at this point, we feel it will be
more instructive to solve an explicit example - that of onc-dimensional lamination, where
energy decay does indeed take place.

4. ONE-DIMENSIONAL LAMINATION AND EFFECTIVE MEDIUM PROPERTIES

We specialize now to the case where the microstructure is a lamination. For
convenience, we choose x, to be the layering direction. The periodic cell, here a slab, is of
size ¢. We need only a scalar ‘fast’ variable y, = x,/e. Let us concentrate our attention on
the cell lying on the interval [ —g/2, ¢/2]. In the y, coordinate, the interval [a, 4] is the domain
Q, I consists of two points y, = a and y, = b. See Fig. 2.

The mixture in this cell is described by

Wil vy efa.b]
u®t if y,é[a bl

il y efa.b]
Ay = {;_ﬂ if y, ¢[a. 5],

pr iy elab)
Py = {p" if y, ¢fa.b).

—i- a [ ;— n

Fig. 2. The periodic cell for one-dimensional lamination is the interval {— 1. !). The interfaces are
at v, = a.b. The slab occupying [«. b] is mixturc A, the remainder is mixture B.



Homogenization model for a composite 387

The internal boundary conditions (2) and (3) reduce to

c
JOllus il ] = ol (04}

c
E&[“‘:IM — ]y ] = 0%:1lns (22)

with continuity requirements on «; across y, = a. b.
Due to the one-dimensional lamination, the expansions (5) and (6) now take the form

u(x) = u’(x,y ) +eu' (x.p) +eluF (X y )+ -

o' (x) =a"(x.y))+ea' (x.y))+eia*(x,y )+ .

Partial differentiation of u* and ¢* with respect to x, need special attention:
1
6[ hnd 8; + ; Dl .

We proceed by considering eqns (8), which for this special case is given by

(A+20)D 4} =0,
WD)+ A(Duf) = 0.

From these relations, we conclude that u® depend only on x and ¢
We also know from eqns (9) that

ol = (A+2p)e}) +Aedy + (A+p) D i, (23
0%: = Ael\ + (A+2p)el2+ 4D uy, (24)
ay = 2uely +AD,u!, (25)

recalling that &) is the strain due to u.
Equation (10) reduces to

Do}, =0,

Dot =0,
from which we conclude that both ¢!, and 69, depend only on x and 1. This fact will be
useful in the calculation lcading to the effective medium. Notice, however, that we cannot

say anything about ¢3,. The boundary conditions (20) and (21) imply that

Cal(“§|d+ —uélu—) = 6?2(xv I)' (26)
cB,(uilne —uily-) = a2(x,1). 27N
We shall go through the calculation of the auxiliary functions only for . The deter-
mination of 1} is much simpler, and does not require the construction of auxiliary functions.

From D09, = 0, we have

D\(A+2p)D \u} = —(A+2p)el, + 1'e3,.

SAS 25/4-D
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We have used primes to denote differentiation with respect to v,. The auxiliary functions
x''and x°* are required to solve

D(A+21)D 3" = —(A+2p),

D,(A4+2m)D " = =4,
and be 1-periodic (generalized) functions of v,. The representation for u| is
Dyui = Dx''e} + Dy el

The auxiliary functions x'' and y*° are relatively easy to solve (see Bensoussan et al..
1978. section 2.3). We use the notation

|
)= ——-,
R ESIT

A
ad>r1= .
TA+2u

The representation for Du) is

ay i,
Dl = [—I + _'Jl:','.+|:—a¢+a, _'Jl:‘:’;. (28)
ay a,

This result will be inserted into eqns (23) and (235).

To find u}, we take &, of eqn (24) after dividing through by . Next, keeping in mind
that a1, depends only on v and 1, we integrate the expression over the intervals (—1/2, 4 —),
(a+.b=), (b+,1/2) in y, to get

~

(7 l
f dy, ;t 2,67y = (a+ oty + 0, (usl, udl ).

b -
|

J d-vl "a’la‘l)l = (h—”)ala?l'{’al(““h —u“ur)~
s H

+

1:2 l
J‘ dy, ;’10:0?1 = (1=h)00s+ 0 (s =il )
b+

We add the three expressions, making use of eqns (26) and (27). and the periodicity of u}
to arrive at

“l“ 2
</—‘>ala?: = al“?! - z_”?b (29)

This is the stress-strain relation governing shear deformation.

Now, we are ready to writc down the stress—strain relation for the effective medium.
We use eqn (28) in (23) and (25) to get the relation for normal stresscs. Hooke's law for
the homogenized medium will be written in matrix form:
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0 i 0
(Y ¢ ¢ 0 €y 0

0% |=]cau 2 O e |+ 0 | (30)
5:0?: 0 0 ¢y 618?: '1'0'?:

The matrix elements are

. (A+p)a
Ciy =Ir‘+—#
a,

-

+ (A+2)a,a,

Ciz = Ha; o
a,

fes

-~
s
i
SR

3

- s
=4+ p)a, + -,
al

For the momentum balance, we have egn (20), which we rewrite here for convenience
as

poiud = 0a). (3

Equations (30) and (31) describe the effective medium,

We can now study the property of the stress—strain law, If ¢ - 0, i.¢. perfect bonding
of the layers, then the second term on the right-hand-side vanishes. In this case, we get a
transversely isotropic medium with five elastic constants,

If the mixture is homogencous, then ¢, = ¢1; = (A+2p)., ¢;2 = €3, = ¢33 = u, which
corresponds to the elasticities of an isotropic medium. We do get an additional term due
to damping. The effect of the damping term will be studied next.

For the homogencous mixture, we can analyze the solution of the governing partial
differential equations using modal analysis. This method will actually work for any aniso-
tropic elastic material, with or without damping, using a modification of the technique used
by Synge (1957). However, since the point of this work is to study anisotropic damping,
we shall exploit the simplicity afforded by the elastic isotropy.

Let us write down the equations satisfied by the displacement vector u(x, ¢) and the
shear stress 6, 5(x. 1). We drop the superscript 0 from now on. From eqns (30) and (31), we
have

pOiuy = A4+ 20030, + 48,031, + 8,05,
poiuy = 40,0y + (A+2p)0uy + 0,03,

2u
8,012 = nd(dyus+0,u,)~ ‘;0'1:'

We are interested in a solution of the form
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u(x. l) =V ell'l‘lw(k)l. (32)

a plane wave with a fixed wave number k = (k,, k), at frequency w which depends on k.
Substituting eqn (32) into the equations governing u and o. we get

rki+aki—a® (P -2+vkk: |[c _[o 33
(rP=2+x)k k. rki+aki-ao [le.] LOJ )

where we have used the normalized frequency

- ﬁ
G=—, ¢=_[-:
G p

and defined the P-to-S wavespeeds ratio (squared)

. (A+20)
r- =
It
the dissipation constant
N
c
and a new variable
i
o= s
1w+

The goal now is to find @ and v which satisfy eqn (33). For each k, these are called the
frequency and the displacement mode respectively. The function & as a function of & is the
dispersion curve for that mode. If the dispersion curve has a positive imaginary component,
then that mode decays exponentially in time. The imaginary component of & is referred to
As attenuvation.

For a mode to be non-trivial & must be such that the determinant in eqn (33) is zero.
After writing k = (k cos 0, k sin 0), the required condition on the determinant becomes a
fifth order polynomial equation:

-2

0+ @~k + Did* =k ra’ +k*rtio+kic sin® 200 =1) = 0. (34)

This equation can be solved exactly for 8 = 0, i.e. propagation in the x, direction. For this
angle, we have

@ =0 v=(0,1)
= trk v=(.0)
w = i\/kz-—c'—zﬁ+ic'/2 V=(0-I)'

The first solution corresponds to the static (non-propagating) solution, and we choose to
ignore it. The sccond solution corresponds to P-waves propagating in the x, direction.
Notice that this mode is not attenuated. The last solution corresponds to S-waves, and this
mode decays exponentially as a function of time according to a factor of ¢’/2.

The dispersion curves exhibit symmetry about multiples of n/4 in 0, as exhibited by
the last term in eqn (34). For angles other than 0, we resorted to the computer to solve for
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P—wave Attenuation

0.15
C 8=6/4 ]
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0.03:— —
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L =0
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wave number k

Fig. 3. This figure illustrates the attenuation for waves propagating nearly at the P-wave speed. The
constants are r = 2, ¢" = |. Notice that there is no attenuation at § = 0. Observe also that the
attenuation is generally less severe than for S-wave modes.

the roots of eqn (34). For our calculations. we took r = 2 and ¢’ = |. We considered wave
numbers 0 < k& <€ 5 because the interesting phenomena in the dispersion occur at low wave
numbers.

The results show that there is always a static mode. However, this mode decays
exponentially for ¢ not equal to multiples of 7/2. This simply means that if the initial data
for an initial value problem begin with a static equilibrium solution, this solution will
decay exponentially in time, depending on its Fourier components. However,since we are
concerned mostly with propagation problems, this is not an issue.

In addition to static modes, we have two propagating modes. One mode travels nearly
at the P-wave speed, and the other at the S-wave speed. Both modes are slightly dispersive
near zero wave numbers. The more interesting aspect is their attenuation.

For modes travelling at nearly P-wave speed, we find that the attenuation is zero for
0 =0, as our carlier calculation shows. When 0 increases, the attenuation increases and
peaksat ) = n/4. The behavior is symmetricabout 8 = n/4. For a fixed angle of propagation,
the attenuation is small at low wave numbers, then increases until it flattens to a constant
value. This is illustrated in Fig. 3.

For modes travelling at nearly S-wave speed (Fig. 4), we find that the attenuation is
largest at § = 0. At this angle, there is a threshold wave number below which no propagating

S—wave Attenuation

046: 'YV]’TYY#rYYrTIr[TV[fYIV:
055— 6=0_
o 5
g 04 —]
I 5
F 03 0=n/12]
2 . :
S 0z 3
= C ]
0.1 g=r/67

= ~

oot L by L 19574

0 1 2 3 4 ]

wave number k

Fig. 4. The attenuation curves for waves propagating nearly at the S-wave speed. The constants are
the same as those in Fig. 3. Notice that there is no attenuation at @ = n/4.
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solution exist. This s displayed in the formula for exact dispersion above. As ¢ increases.
the attenuation decreases until 8 = -4, where no attenuation occurs. The explanation is
that shear waves polarized at n 4 generate only normal tractions along the interfuces. and
since only shear traction produces dissipation, no attenuation occurs.

5. DISCUSSION

We have constructed a model of a medium which is anisotropic in both elasticities and
frictional losses. The model material is made up of periodic cells. where each cell is made
by mixing two isotropic elastic components. The losses are caused by viscous sliding at the
microstructural interfaces.

The technique of homogenization was used to replace the rather complicated structure
with an effective medium. It was shown that a new time-dependent stress-strain law is
satisfied by the homogenized medium. For the particularly simple case of one-dimensional
lamination. we calculated the explicit form of the effective medium equations and studied
the properties of the solution.

[t should be remarked that we can easily extend the results presented here to the case
where the mixture is allowed to vary smoothly from cell to cell. In place of ¢ (x) = u(x/e)
we would have g*(x) = u(x. x/¢). and similarly for 42 and p. The viscous constant may also
be made to depend on x. This added complexity only means that the homogenized elasticities
and dissipation tensor in eqn (19) will depend on x.

Sensitivity analysis would be a natural test to subject our material to. The analysis will
reveal, one hopes, the number and the types of experiments needed to determine all the
constants in eqn (19).

As a possible application for the material modeled here, we could consider the problem
of finding regions where the dissipation cocetlicient in equation (19) is substantial from
measured responses of the medium to known excitation. This could be a simple-minded
caricature of tinding zones of debonding (delamination) in a composite medium, as we
expect some shiding to occur there.
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